Upper bounds known for length of side of the smallest square box in which one may enclose n squares of side 1. (Decimals are approximate of course) For more information including illustrations see DS7: Erich Friedman, ``Packing Unit Squares in Squares'' http://www.combinatorics.org/Surveys/index.html n upper bound for s(n) 1 1 2--4 2 5 2 + (1/2) sqrt(2) = 2.7072 6--9 3 10 3 + (1/2) sqrt(2) = 3.7072 11 =3.8772 12--16 4 17 (7/3) + (5/3) sqrt(2) = 4.6904 18 (7/2) + (1/2) sqrt(7) = 4.8229 19 3 + (4/3) sqrt(2) = 4.8857 20--25 5 26 (7/2) + (3/2) sqrt(2) = 5.6214 27 5 + (1/2) sqrt(2) = 5.7072 28 3 + 2 sqrt(2) = 5.8285 29 = 5.9665 30--36 6 37 = 6.6213 38 6 + (1/2) sqrt(2) = 6.7072 39 (11/2) + (1/2) sqrt(7) = 6.8229 40 4 + 2 sqrt(2) = 6.8285 41 2 + (7/2) sqrt(2) = 6.9498 42--49 7 50 = 7.6213 51--52 7 + (1/2) sqrt(2) = 7.7072 53 5 + 2 sqrt(2) = 7.8285 54 6 + (4/3) sqrt(2) = 7.8857 55--64 8 65 5 + (5/2) sqrt(2) = 8.5356 66 3 + 4 sqrt(2) = 8.6569 67 8 + (1/2) sqrt(2) = 8.7072 68 6 + 2 sqrt(2) = 8.8285 69 (5/2) + (9/2) sqrt(2) = 8.8640 70 (15/2) + sqrt(2) = 8.9143 71--81 9 82 6 + (5/2) sqrt(2) = 9.5356 83 4 + 4 sqrt(2) = 9.6569 84 9 + (1/2) sqrt(2) = 9.7072 85 (11/2) + 3 sqrt(2) = 9.7427 86 (17/2) + (1/2) sqrt(7) = 9.8229 87 (14/3) + (11/3) sqrt(2) = 9.8522 88 (17/2) + sqrt(2) = 9.9143 89 5 + (7/2) sqrt(2) = 9.9498 90--100 10