From: spellucci@mathematik.tu-darmstadt.de (Peter Spellucci) Subject: Re: Wavelet tranform Date: 1 Feb 2000 18:07:51 GMT Newsgroups: sci.math.num-analysis Summary: [missing] In article <38970FB7.26DA@cerfacs.fr>, Bruno Carpentieri writes: |> Hi there. |> |> Anyone knows if exists a wavelet basis able to transform a dense |> symmetric (non-Hermitian) matrix whose entries decay smoothly far |> from the diagonal into a sparse matrix ? Schneider, Reinhold Multiskalen- und Wavelet-Matrixkompression. Analysisbasierte Methoden zur effizienten Loesung grosser vollbesetzter Gleichungssysteme. (Multiscale and wavelet matrix compression). (German) [B, H] Advances in Numerical Mathematics. Stuttgart: B. G. Teubner. Darmstadt: TH Darmstadt, ii, 246 S. DM 59.80; oeS 437.00; sFr. 54.00 (1998). [ISBN 3-519-02739-9/pbk] 900.65127 Konik, Michael; Schneider, Reinhold; Steidl, Gabriele Matrix sparsification by discrete wavelet transform. (English) [J] Z. Angew. Math. Mech. 76, Suppl. 1, 445 (1996). [ISSN 0044-2267] Alpert, Bradley K. Construction of simple multiscale bases for fast matrix operations. (English) [CA] Ruskai, Mary Beth (ed.) et al., Wavelets and their applications. Boston, MA etc.: Jones and Bartlett Publishers, (ISBN 0-86720-225-4/hbk). 211-226 (1992). hope that helps peter