From: Lee Rudolph
Subject: Re: classification of one dimensional manifold
Date: 29 Oct 2001 09:55:57 GMT
Newsgroups: sci.math
Summary: [missing]
"bomber0" writes:
>"A connected, 2nd countable,1-dim manifold (without boundary) is
>homeomorphic to R or S1 " or
>"Show that S1 is the only compact 1 manifold"
>
>How can I prove this?
>or
>Where can I find proof of this?
An appendix to Milnor's _Topology from the Differentiable Point of
View_.
Lee Rudolph
==============================================================================
From: Chan-Ho Suh
Subject: Re: classification of one dimensional manifold
Date: Mon, 29 Oct 2001 10:42:37 -0800
Newsgroups: sci.math
[quote of previous message deleted --djr]
Slight correction: Milnor, Topology from the Differentiable Viewpoint.
Also, he presupposes everything is in the smooth category. There's some
work to show the result is true for the topological category.