From: "Iain Davidson" Subject: Re: Sum of Three Cubes is a Square (the 4 families) Date: Thu, 19 Jul 2001 00:58:31 +0100 Newsgroups: sci.math Summary: Parameterized solutions in integers Tito Piezas III wrote in message news:ucfdqgvx4t4h@forum.mathforum.com... > Hello all, > > The identities, > > 40^3 + 2^3 + 1^3 = 253^2 > 17^3 + 4^3 + 4^3 = 71^2 > 16^3 + 6^3 + 9^3 = 71^2 > 25^3 + 12^3 + 36^3 = 253^2 > and > 22520^3 + 10^3 + 1^3 = 3379501^2 > 5665^3 + 20^3 + 4^3 = 426383^2 > 2560^3 + 30^3 + 9^3 = 129527^2 > 745^3 + 60^3 + 36^3 = 20341^2 > > have the parametrization, > > (36a^4 + 4ab^3)^3 + (2ab^3)^3 + (b^4)^3 = (216a^6 + 36a^3b^3 + b^6)^2 > > (9a^4 + 8ab^3)^3 + (4ab^3)^3 + (4b^4)^3 = (27a^6 + 36a^3b^3 + 8b^6)^2 > > (4a^4 + 12ab^3)^3 + (6ab^3)^3 + (9b^4)^3 = (8a^6 + 36a^3b^3 + 27b^6)^2 > > (a^4 + 24ab^3)^3 + (12ab^3)^3 + (36b^4)^3 = (a^6 + 36a^3b^3 +216b^6)^2 These seem to be basically equations of the form x^3 + (py)^3 + (qy)^3 = s^2 x^3 +(p^3 +q^3)y^3 = s^2 So basically solutions to x^3 +Ay^3 = s^2, where A is a sum of two cubes are required The cubic form x^3 +Ay^3 +A^2*z^3 -3Axyz can be factorised as (x +yr + zr^2)(x +ywr + zwwr^2)(x +ywwr + zwr^2) r cubrt(a), w primitive cube root unity The form can be made a square by assuming (x +ywr + zwwr^2) = (t +uwr + vwwr^2)^2 Setting z =0, x^3 +Ay^3 = s^2 A =p^3 +q^3, Then, x = 4t(t^3 +(p^3+q^3)u^3) y = -u(8t^3 -(p^3+q^3)u^3) t =1,u=1, p=2,q=1 40^3 +2^3 +1^3 =253^2 t =1,u=2, p=2,q=1 292^3 + 256^3 + 128^3 =6616^3 The method for x^3 +Ay^3 =s^2, does not seem to give all solutions though, e.g x^3 +2y^3 = s^2, x =17, y=4, s =71 ============================================================================== From: ayatollah potassium Subject: Re: Sum of Three Cubes is a Square Date: Thu, 26 Jul 2001 19:28:54 -0400 Newsgroups: sci.math All rational solutions of x^3 + y^3 + z^3 = w^2 are parametrized by: x = a (a^3+b^3+c^3) t^2 y = b (a^3+b^3+c^3) t^2 z = c (a^3 +b^3+c^3) t^2 w = (a^3+b^3+c^3)^2 t^3. James Buddenhagen wrote: > I'd be interested in parameterizations where d is not a cube. > > --Jim Buddenhagen