From: kohmoto@z2.zzz.or.jp (y.kohmoto) Subject: Identity for 4 cubes Date: 22 Jan 01 03:06:24 GMT Newsgroups: sci.math.numberthy Summary: Parameterized solutions for sums of 3 cubes to be a cube I discoverd a sequence of identities for a diophantine equation : A^3+B^3+C^3=D^3 . The iteration for the identity is as follows : x0=9*a^4; y0=-9*a^4+3*a*b^3; z0=-9*a^3*b+b^4; u0=b^4 x1=9*a^4; y1=-9*a^4-3*a*b^3; z1=9*a^3*b+b^4; u1=b^4 for n=2 xn=(432*a^6-2*b^6) * x_(n-1) - x_(n-2)*b^6 - 108 * a^4*b^6 yn=(432*a^6-2*b^6) * y_(n-1) - y_(n-2) *b^6- 108 * a^4*b^6 zn=(432*a^6-2*b^6) * z_(n-1) - z_(n-2)*b^6 + 216 * a^6*b^4 + 4*b^10 un= b^(6*n-2) for 3<=n xn=(432*a^6-2*b^6) * x_(n-1) - x_(n-2)*b^12 - 108 * a^4*b^(6*n-6) yn=(432*a^6-2*b^6) * y_(n-1) - y_(n-2) *b^12- 108 * a^4*b^(6*n-6) zn=(432*a^6-2*b^6) * z_(n-1) - z_(n-2)*b^12 + (216 * a^6*b^4 +4*b^10)*b(6*n-12) un= b^(6*n-2) for all n xn^3+yn^3+zn^3=un^3 ex. If n=4, the identity is as follows : (725594112*a^22-31912704*b^6*a^16+194400*b^12*a^10-279*b^18*a^4)^3+ ( -725594112*a^22-241864704*b^3*a^19-8398080*b^6*a^16+2799360*b^9*a ^13+85536*b^12*a^10-7776*b^15*a^7-153*b^18*a^4+3*b^21*a)^3+ ( 725594112*b*a^21+120932352*b^4*a^18-8398080*b^7*a^15-839808*b^10* a^12+23328*b^13*a^9+1296*b^16*a^6-9*b^19*a^3+b^22 )^3=b^66 If b=1, then it becomes the same thing as the iteration on "Identities Of Equal Sums Of Like Power" : http://euler.free.fr/identities.htm Is it known?