From: Doug Magnoli Subject: Re: STUDENT NEEDS HELP :o( Date: Sun, 08 Apr 2001 22:42:02 GMT Newsgroups: sci.math.num-analysis Summary: Elementary reduction of homogeneous ODE First of all, this problem is better posted in alt.alg.help or alt.math.undergrad. Second, if STUDENT NEEDS HELP :o(, then STUDENT NEEDS to learn to post what STUDENT has done on a problem and where STUDENT is stuck. M dx + N dy = 0 Set x = r cos q, y=r sin q M dx = M (dx/dr) dr + M (dx/dq) dq = M cos q dr - M r sin q dq N dy = N(dy/dr) dr + N(dy/dq) dq = N sin q dr + N r cos q dq M dx = - N dy M cos q dr - M r sin q dq = -N sin q dr - N r cos q dq M cos q dr + N sin q dr = -N r cos q dq + M r sin q dq (M cos q + N sin q) dr = r (-N cos q + M sin q) dq dr / r = (-N cos q + M sin q) dq / (M cos q + N sin q) (*) ---- (x+y) dx - x dy = 0 M = x+y = r(cos q + sin q) N = -x = -r cos q Substituting into (*), we get: dr / r = (r cos^2 q + r sin q (cos q + sin q)) dq / (r (cos q + sin q) cos q - r cos q sin q) dr/r = (cos^2 q + sin q cos q + sin^2 q) dq / (cos^2 q + sin q cos q - cos q sin q) = (1 + sin q cos q) dq / (cos^2 q) = sec^2 q dq + sin q dq / cos q Integrate to get: ln r = tan q - ln(cos q) + C r = A exp (tan q - ln(cos q)) = A exp(tan q) / cos q = A exp (y/x) / (x/r) x = A exp (y/x) ln x = C + y/x x ln x - C x = y Check: dy = (1+ln x - C) dx (x+y) dx - x dy = (x + x ln x - C x) dx - x(1 + ln - C) dx = 0 --- Now that you've seen the method, you should be able to do the rest on your own. -Doug Magnoli Phishndisc wrote: > I have these questions due and i cannot figure them out ANY help will be > greatly appreciated...please email me with any any any! info....THANKS EVERYONE > > 1) Suppose the equations M dx + N dy = 0 is homogenous. Show that the > transformation x = r cos q, y = r sin q reduces this equation to a separable > equation in the variables r and q. ( q= theta ) > > 2) Use this method above to solve these two --> > > ( x + y ) dx - x dy = 0 > > and > > (2xy + 3 y^2) dx - ( 2xy + x^ 2) dy = 0 > > 3)Solve The Diff. EQ. > > dy + (4y - 8 y^-3) x dx = 0 > > 4) Solve initial value problems > > dy/dx + y = f(x), Where f(x) = {2, 0 <= x <1 > {0, x >= 1, y(0) = 0 > > 5) Solve The Diff. EQ. > > x dy/dx + (2x+1)/(x+1) y = x-1