MathSciNet search --- Matches for: Title=proofs and "prime number theorem" [1] 2001a:11155 Lu, Wen Chao On the elementary proof of the prime number theorem with a remainder term. Rocky Mountain J. Math. 29 (1999), no. 3, 979--1053. (Reviewer: Nigel Watt) 11N05 (11M26 11N36) [2] 2000b:11110 Varadarajan, V. S. Some remarks on the analytic proof of the prime number theorem. Nieuw Arch. Wisk. (4) 16 (1998), no. 3, 153--160. (Reviewer: K. Soundararajan) 11M45 (11N05) [3] 99m:11102 Elstrodt, Jürgen A quick proof of the prime number theorem for arithmetic progressions. Charlemagne and his heritage. 1200 years of civilization and science in Europe, Vol. 2 (Aachen, 1995), 521--530, Brepols, Turnhout, 1998. (Reviewer: Alessandro Zaccagnini) 11N13 (11N05) [4] 99i:11080 Sinnadurai, J. St. C. L. An elementary proof of the prime number theorem along classical lines. J. Nat. Geom. 15 (1999), no. 1-2, 77--80. (Reviewer: D. R. Heath-Brown) 11N05 (40G05) [5] 98j:11069 Zagier, D. Newman's short proof of the prime number theorem. Amer. Math. Monthly 104 (1997), no. 8, 705--708. (Reviewer: Matti Jutila) 11N05 (11M06) [6] 94k:11103 Granville, Andrew On elementary proofs of the prime number theorem for arithmetic progressions, without characters. Proceedings of the Amalfi Conference on Analytic Number Theory (Maiori, 1989), 157--194, Univ. Salerno, Salerno, 1992. (Reviewer: H. G. Diamond) 11N13 [7] 93g:11101 Zhang, Wen-Bin Elementary proofs of the abstract prime number theorem for algebraic function fields. Trans. Amer. Math. Soc. 332 (1992), no. 2, 923--937. 11N80 (11M45 11R44 11R58) [8] 90i:11094 Srinivasan, B. R.; Sampath, A. An elementary proof of the prime number theorem with a remainder term. J. Indian Math. Soc. (N.S.) 53 (1988), no. 1-4, 1--50. (Reviewer: D. R. Heath-Brown) 11N05 [9] 82m:10061 \v Cí\v zek, Ji\v rí On the proof of the prime number theorem. With a loose Russian summary. \v Casopis P\v est. Mat. 106 (1981), no. 4, 395--401, 436. (Reviewer: Jeffrey D. Vaaler) 10H05 (10H15) [10] 82h:10056 Newman, D. J. Simple analytic proof of the prime number theorem. Amer. Math. Monthly 87 (1980), no. 9, 693--696. (Reviewer: G. L. Cohen) 10H15 [11] 56 #2937 Novák, B\v retislav On the elementary proof of the prime number theorem. (Czech) \v Casopis P\v est. Mat. 100 (1975), no. 1, 71--84. (Reviewer: T. T. Tonkov) 10H15 [12] 55 #2724 Guerin, E. E.; Buschman, R. G. Elementary proofs of statements equivalent to the prime number theorem. Portugal. Math. 35 (1976), no. 1--2, 41--59. (Reviewer: T. M. Apostol) 10A20 [13] 53 #10743 Gerig, S. A simple proof of the prime number theorem. J. Number Theory 8 (1976), no. 2, 131--136. (Reviewer: S. Ikehara) 10H15 [14] 53 #7981 Guerin, E. E.; Buschman, R. G. Elementary proofs of the prime number theorem. Math. Japon. 20 (1975), no. 4, 273--282 (1976). (Reviewer: D. Suryanarayana) 10H40 [15] 50 #252 Hoffmann, György; Surányi, László An exposition of the first arithmetic proof of the prime number theorem. (Hungarian) Mat. Lapok 23 (1972), 31--51 (1973). (Reviewer: P. Erdos) 10H15 [16] 49 #234 Sobirov, A. \v S. On the prime number theorem in its elementary method of proof. (Russian) Izv. Akad. Nauk UzSSR Ser. Fiz.-Mat. Nauk 18 (1974), no. 1, 64. (Reviewer: J. S. Joel) 10H15 [17] 48 #2092 Lavrik, A. F.; Sobirov, A. \v S. The remainder term in the elementary proof of the prime number theorem. (Russian) Dokl. Akad. Nauk SSSR 211 (1973), 534--536. (Reviewer: J. S. Joel) 10H15 [18] 45 #3343 Littlewood, J. E. The quickest proof of the prime number theorem. Acta Arith. 18 (1971), 83--86. (Reviewer: K. Thanigasalam) 10H15 [19] 43 #6169 Diamond, Harold G.; Steinig, John An elementary proof of the prime number theorem with a remainder term. Invent. Math. 11 1970 199--258. (Reviewer: S. Ikehara) 10.42 [20] 42 #4503 Breusch, Robert The prime number theorem and its proofs. Math. Chronicle 1 1970 part 2, 61--70. 10.42 [21] 41 #6772 Kalecki, M. A short elementary proof of the prime number theorem. Prace Mat. 13 1969 51--55. (Reviewer: E. M. Horadam) 10.08 [22] 39 #2712 Levinson, Norman A motivated account of an elementary proof of the prime number theorem. Amer. Math. Monthly 76 1969 225--245. (Reviewer: S. Ikehara) 10.42 [23] 38 #1056 Ste\v ckin, S. B. A simple proof of \v Ceby\v sev's prime number theorem. (Russian) Uspehi Mat. Nauk 23 1968 no. 5 (143), 221--222. (Reviewer: A. Schinzel) 10.08 [24] 36 #1398 Levinson, N. On the elementary proof of the prime number theorem. Proc. Edinburgh Math. Soc. (2) 15 1966/1967 141--146. (Reviewer: P. Erdös) 10.40 [25] 29 #4742 Grosswald, E. A proof of the prime number theorem. Amer. Math. Monthly 71 1964 736--743. (Reviewer: A. E. Ingham) 10.42 [26] 26 #1290 Amitsur, S. A. On a lemma in elementary proofs of the prime number theorem. Bull. Res. Council Israel Sect. F 10F 1962 101--108 (1962). (Reviewer: M. Cugiani) 10.42 [27] 22 #4685 Breusch, Robert An elementary proof of the prime number theorem with remainder term. Pacific J. Math. 10 1960 487--497. (Reviewer: P. Erdös) 10.00 [28] 20 #7172 Pitt, H. R. A general Tauberian theorem related to the elementary proof of the prime number theorem. Proc. London Math. Soc. (3) 8 1958 569--588. (Reviewer: S. Ikehara) 40.00 (10.00) [29] 16,904f Breusch, Robert Another proof of the prime number theorem. Duke Math. J. 21, (1954). 49--53. (Reviewer: H. N. Shapiro) 10.0X [30] 14,137d Wright, E. M. The elementary proof of the prime number theorem. Proc. Roy. Soc. Edinburgh. Sect. A. 63, (1952). 257--267. (Reviewer: H. N. Shapiro) 10.0X [31] 13,824a Fogels, Č. K. On an elementary proof of the prime number theorem. (Russian) Latvijas PSR Zin\=at\c nu Akad. Fiz. Mat. Inst. Raksti. 2, (1950). 14--45. (Reviewer: H. N. Shapiro) 10.0X [32] 13,725f Tatuzawa, Tikao; Iseki, Kanesiro On Selberg's elementary proof of the prime-number theorem. Proc. Japan Acad. 27, (1951). 340--342. (Reviewer: A. L. Whiteman) 10.0X [33] 13,536d Tanaka, Minoru An elementary proof of the prime number theorem. (Japanese) S\=ugaku (Mathematics) 3, (1951). 136--143. (Reviewer: S. Ikehara) 10.0X [34] 11,420a Erdös, P. On a Tauberian theorem connected with the new proof of the prime number theorem. J. Indian Math. Soc. (N.S.) 13, (1949). 131--144. (Reviewer: A. E. Ingham) 10.0X [35] 11,419c Selberg, Atle An elementary proof of the prime-number theorem for arithmetic progressions. Canadian J. Math. 2, (1950). 66--78. (Reviewer: A. E. Ingham) 10.0X [36] 10,595c Erdös, P. On a new method in elementary number theory which leads to an elementary proof of the prime number theorem. Proc. Nat. Acad. Sci. U. S. A. 35, (1949). 374--384. (Reviewer: A. E. Ingham) 10.0X [37] 10,595b Selberg, Atle An elementary proof of the prime-number theorem. Ann. of Math. (2) 50, (1949). 305--313. (Reviewer: A. E. Ingham) 10.0X [38] 1 605 145 Pisot, Charles Démonstration élémentaire du théorčme des nombres premiers. (French) [Elementary proof of the prime number theorem] Séminaire Bourbaki, Vol. 1, Exp. No. 20, 123--127, Soc. Math. France, Paris, 1995. 11N05 (c) 2001, American Mathematical Society