From: kovarik@mcmail.cis.McMaster.CA (Zdislav V. Kovarik)
Newsgroups: sci.math
Subject: Re: Legendre polynomal order 6
Date: 23 Oct 1997 13:20:54 -0400
In article <877574579.26957@dejanews.com>, wrote:
:In article <62ljq5$mbg$1@strauss.udel.edu>,
: rawlins@strauss.udel.edu (Michael A Rawlins) wrote:
:>
:>
:> Greetings,
:>
:> Could someone please post/reply the algebraic formula for the 6th
:> order Legendre polynomial. For example:
:>
:> P1 = x
:> 2
:> P2 = 1/2 (3x - 1)
:>
:> .
:>
:> .
:>
:> P6 = ?????
:>
:> Thanks for any help.
:>
:> Michael Rawlins email: rawlins@udel.edu
:
:You may find it in several ways:
:
:1) Differentiate (x^2 - 1)^6 six times, then divide the result by
: 2^6*6! = 46080.
:
:2) Beginning with P(x,0) = 1 and P(x,1) = x apply five times the
: recurrence:
:
: 2n+1 n
: P(x,n+1) = ----- xP(x,n) - --- P(x,n-1)
: n+1 n+1
:
:3) Use a symbolic computation system.
: Example with MAPLE:
:
:> P:= (x,n) -> diff((x^2-1)^n,x$n)/(2^n*n!);
:
: 2 n
: diff((x - 1) , x$n)
: P := (x,n) -> --------------------
: n
: 2 n!
:
:
:> P(x,6);
:
: 6 2 4 2 2 2 2 3
: x + 15/2 (x - 1) x + 45/8 (x - 1) x + 5/16 (x - 1)
:
:> simplify(");
:
: 231 6 315 4 105 2
: --- x - --- x + --- x - 5/16
: 16 16 16
:
:
:Jos� H. Nieto
In addition, you can expand the expression ("generating function")
G(x,z) = (1 - 2*x*z + z^2)^(-1/2)
in powers of z, and pick the coefficient at z^6
(same as): Find the 6-th partial derivative of G(x,z), six times by z, at
z=0, and divide by 6!.
References: many textbooks and handbooks on special functions; I had this
one at hand:
Nico M. Temme, Special Functions, An Introduction...
John Wiley & Sons, New York etc. 1996
ISBN 0-471-11313-1
Cheers, ZVK (Slavek)