From: ksbrown@seanet.com (Kevin Brown) Newsgroups: sci.math Subject: Re: Galois groups of polynomials Date: Tue, 21 Jul 1998 19:38:11 GMT On Wed, 15 Jul 1998 mbg@cyclone.be (marc bogaerts) wrote: > Until a little while I was convinced that the galois group of a > polynomial of degree p was the group S_p of permutations of p > elements (generally speaking, unless the polynomial was rather > "special"). The symmetric group S_n is indeed the most general possible Galois group for a polynomial of degree n, but it's not at all uncommon for a polynomial (even an irreducible one) of degree n to have as it's group a proper SUB-group of S_n. This is the reason it's possible to solve many particular 5th (and higher) degree polynomials in radicals. On Wed, 15 Jul 1998 mbg@cyclone.be (marc bogaerts) wrote: >Somewhere (I lost the reference) I saw that the Galois group of >the polynomial x^6+2*x^5+3*x^4+4*x^3+5*x^2+6*x+7 is _not_ S6. >How can one derive such conclusions ? A fairly quick and simplistic way is to check for roots of this polynomial modulo various primes, to see in which fields the polynomial splits completely into linear factors. With the exception of primes that divide the discriminant (which for this equation is (-2^16)(7^4)), the polynomial will have no repeated roots, so if there are 6 distinct values of x between 0 and p-1 such that f(x)=0 (mod p), then f splits in F_p[x]. Now, by a theorem of Cebotarev we know the proportion of all primes relative to which f(x) splits is asymptotic to 1/order(G) where G is the galois group of f. So, it's fairly simple to just write a little program to count "splitting primes" for any given polynomial, which gives a very robust indication of the order of the group. In your example, we find that f(x) splits relative to p = 1013, 3797, 6449, 6793, 7309, 9473, ... etc. In fact, of the first 4792 primes (not counting 2 and 7, of course), f(x) splits completely relative to 36 of them, which is about 1 out of 133. Clearly the order of the group is not 720 (which it would have to be if the Galois group was S_6), so it must be a proper subgroup. The proper subgroups of S_6 are group order -------- ------ A_6 360 PGL(2,5) 120 G_72 72 PSL(2,5) 60 G_48 48 etc. and we can rule out the alternating group because the discriminant of an alternating group must be a positive square, whereas our discriminant is -157351936, so the only possibility that's really feasible is the group PGL(2,5) of order 120. If you're worried that the group might really be G_72 (even though the "odds" of G_72 having only 36 of the first 4792 primes as splitting primes are incredibly tiny), it's not hard to rule out the smaller groups just by noting how f(x) factors in various F_p[x], and recalling that these factorizations correspond to cyclic decompositions of the permutations in the respective Galois group. For your example we can verify that f splits into irredicible factors of the degrees shown below degrees of p factors in F_p[x] ----- ------------------ 3 6 5 3,3 13 5,1 19 4,1,1 61 2,2,1,1 79 2,2,2 and of course we've seen that f splits into 1,1,1,1,1,1 relative to p=1013, etc., so the Galois group must certainly contain the permutations with these cyclic decompositions, and this rigorously rules out any groups smaller than PGL(5,2). Of course, this still relies on the count of splitting fields, which indicates an order in the neighborhood of 133, to assure us that the order of the group isn't 720. However, if you compute the odds for a Poisson process of getting 36 splitting primes in a range where only 6 or 7 would be expected, you probably won't lose much sleep over it. Moreover, the numbers of factorizations of the different types for the 168 primes (not counting 2 and 7) up to 1013 are predicted type number for G(2,5) ---------- ------- --------- 6 36 33.2 +2.8 5,1 31 27.6 +3.4 4,1,1 39 41.5 -2.5 2,2,1,1 20 20.7 -0.7 2,2,2 11 13.8 -2.8 3,3 29 27.6 +1.4 1,1,1,1,1,1 1 1.4 -0.4 and these densities also conform pretty well with Cebotarev's density theorem for the Galois group PGL(2,5), and of course the compositions {4,2}, {3,2,1}, {3,1,1,1}, and {2,1,1,1,1} are entirely absent, whereas if the group were S_6 they should have asymptotic densities 90/720, 120/720, 40/720, and 15/720, respectively. Thus they should account for almost 37% of the primes, but they are completely absent. Furthermore, they are precisely the compositions that MUST be absent if the group is actually PGL(2,5). The point is that by just playing around with f(x) in various F_p[x] the Galois group of the polynomial quickly becomes very apparent, even without slogging through a rigorous demonstration. ___________________________________________________________ | MathPages /*\ http://www.seanet.com/~ksbrown/ | | / \ | |____________/"Anyone who considers arithmetical methods ___| of producing random digits is, of course, in a state of sin." J. von Neumann