Subject: coloring the polyhedral tori Date: Oct 30 1998 at 15:41 CST (timestamp) From: Rusin To: test out claims about chromatic numbers of nonplanar graphs :-) We have models of 1-holed tori with minimal vertices; are these difficult to color? #Faces as sets of vertices: F1:= [ 1, 2, 3 ]: F2:= [ 2, 1, 4 ]: F3:= [ 3, 5, 1 ]: F4:= [ 4, 6, 2 ]: F5:= [ 6, 1, 5 ]: F6:= [ 5, 2, 6 ]: F7:= [ 3, 4, 5 ]: F8:= [ 4, 3, 6 ]: F9:= [ 7, 1, 6 ]: F10:= [ 7, 2, 5]: F11:= [ 1, 7, 4]: F12:= [ 2, 7, 3]: F13:= [ 3, 7, 6]: F14:= [ 4, 7, 5]: #Edges as sets of faces for i from 1 to 6 do for j from i+1 to 7 do E.i.j:=[]: for k from 1 to 14 do if member(i,F.k) and member(j,F.k) then E.i.j:=[op(E.i.j), k]:fi: od: od:od: #Neighbors as sets of faces for i to 14 do N.i:=[]: for j to 14 do if i<>j and nops({op(F.i)} intersect {op(F.j)})>1 then N.i:=[op(N.i),j]:fi:od: od: N1 [2, 3, 12] N2 [1, 4, 11] N3 [1, 5, 7] N4 [2, 6, 8] N5 [3, 6, 9] N6 [4, 5, 10] N7 [3, 8, 14] N8 [4, 7, 13] N9 [5, 11, 13] N10 [6, 12, 14] N11 [2, 9, 14] N12 [1, 10, 13] N13 [8, 9, 12] N14 [7, 10, 11] Neighbor diagram: * (6) | | | | 13 10 / \ / \ / \ / \ 9 12 14 | | | | | | 11 1 7 / \ / \ / \ / \ / \ / \ (14) 2 3 * (*) = face #8 | | | | 4 5 / \ / \ / \ / \ * 6 (9) Note the pattern: 1 in center (8 opposite); 2,3,12 in one ring, 4,5 7,10 13,11 in next, 6 (9) * 14 (6) * 9 (14) * in last Thus the thing is 2-colorable: Red: 1,4,5,7,10,13,11 Blue: 2,3,12,6,9,14,8