From: blcarr01@talos.spd.louisville.edu ( Brent Lynn Carruth) Subject: Re: Filon's Method for Numerical Integration Date: 29 Jun 1999 22:39:07 GMT Newsgroups: sci.math.num-analysis >I am trying to get hold of Filon's method for numerical integration of >an oscillating function. The integrand is of the form f(x)*cos(a*x) >where f(x) is slowly varying. I know the formula is in Abramowitz & >Stegun but I cannot get hold of it. I have had A&S on order for nearly 4 >weeks now but it has not arrived and could take more weeks. I did get >hold of Evans' book on "Practical Numerical Integration" but it only >gives the expressions for the f(x)*sin(a*x) integral. > >Can anyone out there give me the expression for the f(x)*cos(a*x) >integral please? >-- >David Wilkinson Note: I typed and carefully proofread these formulas from the "Handbook of Mathematical Functions" myself, if there are any errors in the transcription then they are mine. However, I call attention to the formula 25.4.54 wherein the arguments for $\beta$ and $\gamma$ are omitted. I believe this to be a typographical error in the "Handbook." Hope this helps, Brent L. Carruth, Ph.D. ------------------------------------------------------------------------------- Filon's Integration Formula[3] 25.4.47[1] $$ \int_{x_0}^{x_{2n}} f(x) \cos tx \, dx = h \biggl[ \alpha(th) (f_{2n} \sin t x_{2n} - f_{0} \sin t x_0) + \beta(th) C_{2n} + \gamma(th) C_{2n-1} + {2 \over 45}th^4 S'_{2n-1}\biggr]-R_n $$ 25.4.48 $$ C_{2n} = \sum_{i=0}^{n} f_{2i} \cos (tx_{2i})-{1 \over 2} [f_{2n} \cos tx_{2n} + f_0 \cos t x_0] $$ 25.4.49 $$ C_{2n-1} = \sum_{i=1}^{n} f_{2i-1} \cos t x_{2i-1} $$ 25.4.50 $$ S'_{2n-1} = \sum_{i=1}^{n} f_{2i-1}^{(3)} \sin tx_{2i-1} $$ 25.4.51 $$ R_n = {1 \over 90}nh^5 f^{(4)}(\xi) + O(th^7) $$ 25.4.52 $$\eqalign{ \alpha(\theta) &= {1 \over \theta} + {\sin 2\theta \over 2 \theta^2} - {2 \sin^2 \theta \over \theta^3}\cr \beta(\theta) &= 2 \biggl( {1 + \cos^2 \theta \over \theta^2} - {\sin 2 \theta \over \theta^3}\biggr)\cr \gamma(\theta) &= 4 \biggl( {\sin \theta \over \theta^3} - {\cos \theta \over \theta^2}\biggr)\cr} $$ For small $\theta$ we have 25.4.53 $$\eqalign{ \alpha &= {2\theta^3 \over 45} - {2\theta^5 \over 315} + {2\theta^7 \over 4725} - \cdots \cr \beta &= {2 \over 3} + {2\theta^2 \over 15} - {4\theta^4 \over 105} + {2\theta^6 \over 567} - \cdots \cr \gamma &= {4 \over 3} - {2\theta^2 \over 15} + {\theta^4 \over 210} - {\theta^6 \over 11340} + \cdots \cr}$$ 25.4.54 $$ \int_{x_0}^{x_{2n}} f(x) \sin tx \, dx = h \biggl[ \alpha(th) (f_0 \cos tx_0 - f_{2n} \cos tx_{2n}) + \beta S_{2n} + \gamma S_{2n-1} + {2 \over 45} th^4 C'_{2n-1}\biggr] - R_n $$ 25.4.55 $$ S_{2n} = \sum_{i=0}^{n} f_{2i} \sin (tx_{2i}) - {1 \over 2} [f_{2n} \sin(tx_{2n})+f_0\sin(tx_0)] $$ 25.4.56 $$ S_{2n-1} = \sum_{i=1}^{n} f_{2i-1} \sin (tx_{2i-1}) $$ 25.4.57 $$ C'_{2n-1} = \sum_{i=1}^{n} f_{2i-1}^{(3)} \cos(tx_{2i-1}) $$ Footnote [3] For certain difficulties associated with this formula, see the article by J. W. Tukey, p. 400, ``On Numerical Approximation,'' Ed. R. E. Langer, Madison, 1959. Reference [1] "Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables," Edited by Milton Abramowitz and Irene A. Stegun, National Bureau of Standards Applied Mathematics Series 55 -------------------------------------------------------------------------------