From: Robin Chapman Subject: Re: awkward integral Date: Tue, 31 Aug 1999 13:02:08 GMT Newsgroups: sci.math Keywords: Use generating function to evaluate beta function definite integrals In article <37C97FAE.ADFC9894@cableol.co.uk>, neenag@cableol.co.uk wrote: > > > The question is: > > Find: > > 1 > Int x^k * (1-x)^(n-k) dx. > 0 Use generating functions. Fix n and let I_k denote the integral. Let F(t) = I_0 + (n choose 1) I_1 + (n choose 2) I_2 + ... + I_n so that F(t) = integral_0^1 (1+(t-1)x)^n dx = (t^{n+1} - 1)/[(n+1)(t-1)] = [1/(n+1)][1 + t + t^2 + ... + t^n]. Hence (n choose k) I_k = (n choose k)/(n+1) or I_k = k!(n-k)!/(n+1)!. -- Robin Chapman http://www.maths.ex.ac.uk/~rjc/rjc.html "They did not have proper palms at home in Exeter." Peter Carey, _Oscar and Lucinda_ Sent via Deja.com http://www.deja.com/ Share what you know. Learn what you don't. ============================================================================== From: Murray Subject: Re: awkward integral Date: Wed, 01 Sep 1999 10:13:01 +1000 Newsgroups: sci.math Herman Rubin wrote: > > In article <7qgjo7$i1r$1@nnrp1.deja.com>, > Robin Chapman wrote: > >In article <37C97FAE.ADFC9894@cableol.co.uk>, > > neenag@cableol.co.uk wrote: > > >> The question is: > > >> Find: > > >> 1 > >> Int x^k * (1-x)^(n-k) dx. > >> 0 > > >Use generating functions. Fix n and let I_k denote the integral. This is a Beta function, see eg Abramowitz & Stegun p258. -- Murray mld@junk.rosella.apana.org.au Whether we get the right or wrong answer, we can now get it much faster than a year ago.