From: Fred Galvin Subject: Re: straight lines Date: Thu, 15 Apr 1999 21:52:59 -0500 Newsgroups: sci.math Keywords: paperfolding On 15 Apr 1999, Michael Toftdal wrote: > Why do you get a straight line when you fold a piece of paper? Dmitry Fuchs and Serge Tabachnikov, "More on Paperfolding", American Mathematical Monthly, January, 1999, 27-35. ============================================================================== [Matches in MathSciNet to Anywhere=origami: [_] [1] [PDF] 1 680 987 (Review) Simon, Lewis; Arnstein, Bennett; Gurkewitz, Rona Modular origami polyhedra. Revised and enlarged reprint of the 1989 original by Simon and Arnstein, with additional material from {\it 3-D geometric origami} [Dover, New York, 1995; MR 97a:52017] by Gurkewitz and Arnstein. Dover Publications, Inc., Mineola, NY, 1999. iv+59 pp. ISBN: 0-486-40476-5 00A08 (00A69 52B12) [_] [2] [PDF] 97c:52016 Bern, Marshall; Hayes, Barry The complexity of flat origami. Proceedings of the Seventh Annual ACM-SIAM Symposium on Discrete Algorithms (Atlanta, GA, 1996), 175--183, ACM, New York, 1996. (Reviewer: Béla Uhrin) 52A37 (52B55) [_] [3] [PDF] 97c:51011 Hull, Thomas A note on "impossible" paper folding. Amer. Math. Monthly 103 (1996), no. 3, 240--241. (Reviewer: Dave Auckly) 51M15 (52A37) [To journal home page] [_] [4] [PDF] 97a:52017 Gurkewitz, Rona; Arnstein, Bennett 3-D geometric origami. Modular polyhedra. Dover Publications, Inc., New York, 1995. iv+73 pp. ISBN: 0-486-28863-3 (Reviewer: D. Barnette) 52B12 (00A08 00A69) [_] [5] [PDF] 96m:51024 Geretschläger, Robert Euclidean constructions and the geometry of origami. Math. Mag. 68 (1995), no. 5, 357--371. (Reviewer: Igor Rivin) 51M15 [To journal home page] [_] [6] [PDF] 96k:05196 Hull, Thomas On the mathematics of flat origamis. Proceedings of the Twenty-fifth Southeastern International Conference on Combinatorics, Graph Theory and Computing (Boca Raton, FL, 1994). Congr. Numer. 100 (1994), 215--224. 05C99 [_] [7] [PDF] 96j:68007 Proceedings of the Seventh Annual ACM-SIAM Symposium on Discrete Algorithms. Held in Atlanta, Georgia, January 28--30, 1996. Association for Computing Machinery (ACM), New York; Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996. x+586 pp. ISBN: 0-89871-366-8 68-06 (05-06) [_] [8] [PDF] 96j:05004 Proceedings of the Twenty-fifth Southeastern International Conference on Combinatorics, Graph Theory and Computing. Held at Florida Atlantic University, Boca Raton, Florida, March 7--11, 1994. Congr. Numer. {100} (1994). Utilitas Mathematica Publishing, Inc., Winnipeg, MB, 1994. pp. 1--256. 05-06 [_] [9] [PDF] 96i:13011 Isbell, John; Schanuel, Stephen Polynomial origami. J. Algebra 175 (1995), no. 2, 478--504. (Reviewer: R. K. Markanda) 13B25 [To journal home page] [_] [10] [PDF] 96f:94003 Heise, Werner; Quattrocchi, Pasquale Informations- und Codierungstheorie. (German) [Information and coding theory] Mathematische Grundlagen der Daten-Kompression und Sicherung in diskreten Kommunikationssystemen [Mathematical foundations of data compression and security in discrete communication systems]. Third edition. Springer-Lehrbuch. [Springer Textbook] Springer-Verlag, Berlin, 1995. xvi+476 pp. ISBN: 3-540-57477-8 (Reviewer: Andrea Sgarro) 94A15 (94-01 94B05 94B10 94B15) [_] [11] [PDF] 96f:00011 Maekawa, Jun Evolution of origami organisms. Symmetry Cult. Sci. 5 (1994), no. 2, 167--177. (Reviewer: Jovi\v sa \v Zuni\'c) 00A69 (52C20) [_] [12] [PDF] 95m:12001 Auckly, David; Cleveland, John Totally real origami and impossible paper folding. Amer. Math. Monthly 102 (1995), no. 3, 215--226. (Reviewer: Martin Krüskemper) 12D15 (12F05) [To journal home page] [_] [13] [PDF] 95k:51028 Huzita, Humiaki Drawing the regular heptagon and the regular nonagon by origami (paper folding). Symmetry Cult. Sci. 5 (1994), no. 1, 69--83. (Reviewer: E. J. F. Primrose) 51M15 (00A69) [_] [14] [PDF] 95j:52015 Miura, Koryo Folds---the basis of origami. Symmetry Cult. Sci. 5 (1994), no. 1, 13--22. (Reviewer: Beifang Chen) 52A37 (00A69 52A10) [_] [15] [PDF] 95j:51029 Justin, Jacques Mathematical remarks about origami bases. Symmetry Cult. Sci. 5 (1994), no. 2, 153--165. (Reviewer: Katrin Tschirpke) 51M15 (00A69 51M04) [_] [16] [PDF] 95j:00008 Lang, Robert J. Mathematical algorithms for origami design. Symmetry Cult. Sci. 5 (1994), no. 2, 115--152. (Reviewer: Igor Rivin) 00A69 (52A37) [_] [17] [PDF] 89h:51020 Kawasaki, Toshikazu; Yoshida, Masaaki Crystallographic flat origamis. Mem. Fac. Sci. Kyushu Univ. Ser. A 42 (1988), no. 2, 153--157. (Reviewer: J. J. Burckhardt) 51F15 (20H15) [_] [18] [PDF] 86d:52003 Hilton, Peter; Pedersen, Jean Folding regular star polygons and number theory. Math. Intelligencer 7 (1985), no. 1, 15--26. (Reviewer: M. Mendès France) 52A37 (11A99) [_] [19] [PDF] 84j:05043 Kahn, J.; Kung, J. P. S. Varieties of combinatorial geometries. Trans. Amer. Math. Soc. 271 (1982), no. 2, 485--499. (Reviewer: F. De Clerck) 05B35 (51D20) [ORIGINAL ARTICLE] [_] [20] [PDF] 84g:53009 Duncan, J. P.; Duncan, J. L. Folded developables. Proc. Roy. Soc. London Ser. A 383 (1982), no. 1784, 191--205. (Reviewer: Robert Connelly) 53A05 (53A04 58C28) [_] [21] [PDF] 81f:52001 Kanade, Takeo A theory of Origami world. Artificial Intelligence 13 (1980), no. 3, 279--311. 52-04 (68G10) [To journal home page] [_] [22] [PDF] 1 717 090 Kloko\v covnik, Alenka Origami numbers. (Slovenian) Obzornik Mat. Fiz. 46 (1999), no. 3, 90--96, III--IV. 51M15 (51M04) [_] [23] [PDF] 1 309 241 Engel, Peter Breaking symmetry: origami, architecture, and the forms of nature. Symmetry Cult. Sci. 5 (1994), no. 1, 37--68. 00A69 [_] [24] [PDF] 1 309 239 Nagy, Dénes Symmet-origami (symmetry and origami) in art, science, and technology. Symmetry Cult. Sci. 5 (1994), no. 1, 3--12. 00A69 (01A99) © Copyright American Mathematical Society 2000