From: "Carl C. K. Mikkelsen" Subject: Re: Reference on Bernstein Polynomials Date: Fri, 26 Nov 1999 12:34:17 +0100 Newsgroups: sci.math.num-analysis,sci.math Keywords: Weierstrass Approximation theorem Matthew T. Brenneman wrote: > > Hi, > > Could you please tell me of a good (introductory) exposition on Sergi > Bernstein's constructive proof (via Bernstein polynomials) of the > Weierstrass Approximation theorem? > > Thank you very much, > > Matt Brenneman Dear Mr. Brenneman. I do not know the proper reference but the proof is very simple, if you are familiar with Markov's inequality. I have included a sketch of the proof written in latex, .dvi and postscript. It is from a note written by one of my teachers, Professor Ebbe Thue Poulsen of the University of Aarhus. Your sincerely Carl Christian Kjelgaard Mikkelsen A student at the University of Aarhus, Denmark. \documentclass[a4paper]{article} \usepackage{amsmath,amssymb} \begin{document} Given $\delta \in (0,1)$ we have the following estimate \begin{multline*} \left| \left( \sum_{k=0}^n \binom{n}{k} x^k(1-x)^{n-k}f\left(\frac{k}{n}\right)\right) - f(x) \right| = \left| \sum_{k=0}^n \binom{n}{k} x^k(1-x)^{n-k}\left(f\left(\frac{k}{n}\right) - f(x) \right) \right| \\ \leqq \left| \sum_{k : |x - \frac{k}{n}| < \delta}^n \binom{n}{k} x^k(1-x)^{n-k}\left(f\left(\frac{k}{n}\right) - f(x) \right) \right| \\ + \left| \sum_{k : |x - \frac{k}{n}| \geqq \delta}^n \binom{n}{k} x^k(1-x)^{n-k} \left(f\left(\frac{k}{n}\right) - f(x) \right) \right|. \end{multline*} Using the uniform continuity of $f$ we chose $\delta$ \begin{equation*} |f(x) - f(y)| < \epsilon, \qquad |x-y| < \delta \end{equation*} and we find \begin{equation*} \left| \sum_{k : |x - \frac{k}{n}| < \delta}^n \binom{n}{k} x^k(1-x)^{n-k}\left(f\left(\frac{k}{n}\right) - f(x) \right) \right | \leqq \epsilon \end{equation*} Let M be an upper bound for $|f|$. Then \begin{equation*} \left| \sum_{k : |x - \frac{k}{n}| \geqq \delta}^n \binom{n}{k} x^k(1-x)^{n-k} \left(f\left(\frac{k}{n}\right) - f(x) \right) \right| \leqq 2 M \sum_{k : |x - \frac{k}{n}| \geqq \delta}^n \binom{n}{k} x^k(1-x)^{n-k} \end{equation*} And now the miracle occurs. The sum \begin{equation*} \sum_{k : |x - \frac{k}{n}| \geqq \delta}^n \binom{n}{k} x^k(1-x)^{n-k} \end{equation*} is interpreted as the probability $P(|nx - Y| \geqq n\delta)$, where $Y$ is a stocastic variable with a binomial density $B(n,x)$. Behold $nx$ is exactly the mean value of such a distribution and we may now use Markov's inequality \begin{equation*} P(|\mu - Y| \geqq t) \leqq \frac{Var(Y)}{t^2} \end{equation*} Thus \begin{equation*} \sum_{k : |x - \frac{k}{n}| \geqq \delta}^n \binom{n}{k} x^k(1-x)^{n-k} \leqq \frac{nx(1-x)}{n^2\delta^2} \leqq \frac{1}{4n\delta^2} \end{equation*} Ofcourse I didn't discover this wonderfull proff by myself. I found it in a lecture note written by one of my teachers : Professor Ebbe Thue Poulsen of The University of Aarhus, Denmark. \end{document} [attachments deleted --djr]