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Quartz crystals and gemstones easily attract all

kinds of 'vibrations'; negative as well as positive.

The stones are always 'open' to receiving

impressions from everyone and everything around

them! Your stone. . . may well have acquired many

negative energies and ' vibrations' before it became

yours. . . . You must do everything you possibly

can to ensure that only the most natural - and purest

- energies remain within your stone.

—some damn New Age Website. . .

The real story started

with a rather mystical

guy himself, Johannes

Kepler (1571-1630),

who’s more famous

as an astronomer (he

worked out the

scientific laws that

describe the orbits of

planets around the

Sun. . .)

In 1611, Kepler

published a little book

called A New Year’s

Gift; or, the Six-

Cornered Snowflake,

and dedicated it to a

friend of his, Matthaus

Wäcker, who happened

to be the treasurer of the

Holy Roman Empire. . .



Kepler was curious about why snowflakes always

seemed to have sixfold symmetry.
After thinking the matter

over, Kepler argued that

snowflakes had six sides

because they were made

of little spheres packed

together. . . and that the

tightest way to pack

together spheres in a

layer was in a hexagonal

pattern, in which every

sphere touches six others.

"The cause of the six-sided

shape of a snowflake is

none other than that of the

ordered shapes of plants

and of numerical constants;

and since in them nothing

occurs without supreme

reason. . . I do not believe

that even in a snowflake

this ordered pattern exists at

random." —Kepler, The

Six-Cornered Snowflake

Some of Kepler’s

details weren’t quite

right, but he’d

grasped something

important: Atoms

exist—and they pack

together in regular,

geometrical ways.

Understand how they

pack together. . .



. . . and you can understand why natural

crystals look the way that they do.

Begin by

packing a

group of

spheres

together in a

single layer.

Atoms

aren't really

spheres, but

for our

purposes we

can pretend

that they

are.

You can

think of the

packing as

consisting

of a number

of

hexagonal

“tiles”. . .

You can

think of the

packing as

consisting

of an

infinite

number of

hexagonal

“tiles”. . .
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It gets

trickier to

show this in

3-D, but

imagine

starting with

a layer of

spheres. . .

. . . and

layering a

second layer

on top of

the first. . .

. . . and a

third layer

on top of

that.

If we "explode" this packing for clarity, we see that every

sphere touches six other spheres in its own layer, three

spheres above it, and three spheres below it.



Spheres packed this

way take up 74.05% of

the available space.

Incidentally, Kepler had

said that this hexagonal

packing is the tightest

possible way to pack

spheres. This idea,

known as Kepler's

Conjecture, was

mathematically proved

true, but not until 1998.

But even this isn’t the simplest description of hexagonal

packing, because you can break it down further.

Let’s redraw this packing structure. . .
The red lines show the simplest repeating structure that

exists in a hexagonal packing. . .



. . . this is the unit cell of a hexagonal packing. The same

basic idea

applies if

you’re

packing

spheres of

different

sizes,

which may

give you a

cubical

packing. . .

And this is

how such

atoms pack

together in

three

dimensions.

Things get more complicated when you have many

different types of sphere, as in this diagram of a clay

mineral's atomic structure. . .

But it's still possible to define a unit cell, even if it's not

obvious what that might look like.



Exactly what the unit cell looks like depends on the sizes

and numbers of atoms and types of bonding. These

diagrams show the unit cell of sodium chloride (NaCl), or

halite (a.k.a. common table salt).

And here’s the one for zinc sulfide (ZnS), or sphalerite.

There are only six basic types of unit cell. . .

isometric / cubic (all sides

equal, all right angles)

orthorhombic (all sides

unequal, all right angles)

tetragonal (one unequal

sides, all right angles)

. . . and I’m not going to test you on the names,

so don’t worry about that for our purposes.

monoclinic (two angles

not right angles)

triclinic (no right angles) hexagonal



Sometimes, the shape of a crystal (its crystal

form) is the same as the shape of its unit cell,

as in this crystal of halite (rock salt).

But unit cells may pack together in more than one

way, and you can't always tell the unit cell by

looking at the crystal form. Calcium fluoride, or

fluorite, has a cubical unit cell. . .

. . . but those cells may pack together in either

cubes or in octahedrons (eight-sided crystals).

Pyrite (iron sulfide) also has a cubic unit cell, but the

actual crystals may be cubes, octahedrons, or

dodecahedrons (twelve-sided crystals), depending on

how the unit cells are stacked.



You can even get crystal shapes that are combinations of

simple shapes—such as the “cube and octahedron balance”

at left, or the “cube-octahedron-pyritohedron modified by

trapezohedral facets” at right -- but let’s not get into that.

Instead, notice how cubical unit cells can pack

together to give you a non-cubical crystal.

In other cases, a mineral may have a unit cell, but the cells

may not pack together in any recognizable crystal form.

Copper, for instance, has a cubical unit cell and forms natural

crystals (left), but often the crystals are too small to see (right).

However, some substances, such as obsidian and

opal, have no unit cells—the atoms are not packed

in crystals at all.

Technically, these aren't minerals—a mineral is defined as having a

repeating ordered structure, i.e. unit cells. Substances with no unit

cell arrangement are called mineraloids.



To tell what the unit

cell actually is, it's

usually necessary to use

X-ray diffraction—

firing a beam of X-rays

into a crystal and

observing the pattern of

diffraction of the beam.

One important class of minerals, the silicates, is built

around groups called silicate tetrahedrons.

(Technically, these aren’t unit cells.)

What makes these important is the fact that

tetrahedra bond together at their corners to make

chains, double chains, sheets. . .

. . . or extremely complex lattice networks, as in this

diagram of the mineral tourmaline.



You can also get cases where the same atoms

may pack together in more than one way. Pure

carbon exists naturally in two forms: graphite. . .

. . . and diamond. When you have a single element

that can form two crystal structures, we call those

structures allotropes.

When a compound

forms two different

structures with the

same composition, we

call them polymorphs.

Calcite (lower left) and

aragonite (upper right) are

polymorphs of CaCO3,

with different unit cells.

So how do we identify minerals?

• chemical composition

• class of unit cell

• crystal form (shape of typical crystals)

• cleavage (natural way the mineral breaks)

• color

• density

• hardness

• other properties. . .


