Index to this page |
Link to discussion of the central nervous system. |
Nerves | Type | Function |
I Olfactory |
sensory | olfaction (smell) |
II Optic |
sensory | vision (Contain 38% of all the axons connecting to the brain.) |
III Oculomotor |
motor* | eyelid and eyeball muscles |
IV Trochlear |
motor* | eyeball muscles |
V Trigeminal |
mixed | Sensory: facial and mouth sensation Motor: chewing |
VI Abducens |
motor* | eyeball movement |
VII Facial |
mixed | Sensory: taste Motor: facial muscles and salivary glands |
VIII Auditory |
sensory | hearing and balance |
IX Glossopharyngeal |
mixed | Sensory: taste Motor: swallowing |
X Vagus |
mixed | main nerve of the parasympathetic nervous system (PNS) |
XI Accessory |
motor | swallowing; moving head and shoulder |
XII Hypoglossal |
motor* | tongue muscles |
All our conscious awareness of the external environment and all our motor activity to cope with it operate through the sensory-somatic division of the PNS.
Link to a discussion of the mechanism by which the commands of the motor neurons of the sensory-somatic system are executed by skeletal muscles. |
It is responsible for monitoring conditions in the internal environment and bringing about appropriate changes in them. The contraction of both smooth muscle and cardiac muscle is controlled by motor neurons of the autonomic system.
The preganglionic motor neurons of the sympathetic system arise in the spinal cord. They pass into sympathetic ganglia which are organized into two chains that run parallel to and on either side of the spinal cord.
The neurotransmitter of the preganglionic sympathetic neurons is acetylcholine (ACh). It stimulates action potentials in the postganglionic neurons.
The neurotransmitter released by the postganglionic neurons is noradrenaline (also called norepinephrine).
The action of noradrenaline on a particular gland or muscle is excitatory is some cases, inhibitory in others. (At excitatory terminals, ATP may be released along with noradrenaline.)
The release of noradrenalineIn short, stimulation of the sympathetic branch of the autonomic nervous system prepares the body for emergencies: for "fight or flight".
Activation of the sympathetic system is quite general becauseThe main nerves of the parasympathetic system are the tenth cranial nerves, the vagus nerves. They originate in the medulla oblongata. Other preganglionic parasympathetic neurons also extend from the brain as well as from the lower tip of the spinal cord.
Each preganglionic parasympathetic neuron synapses with just a few postganglionic neurons, which are located near - or in - the effector organ, a muscle or gland. Acetylcholine (ACh) is the neurotransmitter at all the pre- and many of the postganglionic neurons of the parasympathetic system. However, some of the postganglionic neurons release nitric oxide (NO) as their neurotransmitter.
Parasympathetic stimulation causesIn short, the parasympathetic system returns the body functions to normal after they have been altered by sympathetic stimulation. In times of danger, the sympathetic system prepares the body for violent activity. The parasympathetic system reverses these changes when the danger is over.
The vagus nerves also help keep inflammation under control. Inflammation stimulates nearby sensory neurons of the vagus. When these nerve impulses reach the medulla oblongata, they are relayed back along motor fibers to the inflamed area. The acetylcholine from the motor neurons suppresses the release of inflammatory cytokines, e.g., tumor necrosis factor (TNF), from macrophages in the inflamed tissue.
Although the autonomic nervous system is considered to be involuntary, this is not entirely true. A certain amount of conscious control can be exerted over it as has long been demonstrated by practitioners of Yoga and Zen Buddhism. During their periods of meditation, these people are clearly able to alter a number of autonomic functions including heart rate and the rate of oxygen consumption. These changes are not simply a reflection of decreased physical activity because they exceed the amount of change occurring during sleep or hypnosis.
Link to discussion of the central nervous system. |
Welcome&Next Search |